六月伊人,国产精品制服丝袜欧美,亚洲va在线∨a天堂va欧美va,精品亚洲一区二区三区在线观看国产老熟女色视频,国产熟女九色,国产又粗又大,久久人人网国产精品

人工智能行業(yè)常用名詞科普

2019-12-10    資深UI設(shè)計(jì)者

本文整理了人工智能行業(yè)中設(shè)計(jì)師需要理解的一些名詞和內(nèi)容。

一方面供自己學(xué)習(xí)思考,另一方面也希望能幫助到準(zhǔn)備投入到人工智能行業(yè)的設(shè)計(jì)師。之前聽有的朋友講到,覺得自己沒有計(jì)算機(jī)背景,有點(diǎn)害怕進(jìn)入到這樣一個(gè)領(lǐng)域來。

沒有計(jì)算機(jī)背景沒有關(guān)系,只要對(duì)這個(gè)行業(yè)充滿好奇,一個(gè)個(gè)的問題解決掉,在你眼前的迷霧都會(huì)散去的。

先簡單舉幾個(gè)人工智能在生活中有在應(yīng)用的例子:

像現(xiàn)在有的超市寄存物件,開箱時(shí)采用的人臉識(shí)別;像家里購置的智能音響,時(shí)不時(shí)還能跟它聊上幾句;像接聽到的銀行電話(是的,對(duì)方可能是機(jī)器人噢);像在淘寶上咨詢的客服小蜜;像你手機(jī)里的虛擬助手….等等這些都是人工智能在生活中的應(yīng)用。

人工智能在設(shè)計(jì)領(lǐng)域的應(yīng)用也相當(dāng)廣泛,具體可以看這篇文章:

這幾個(gè)例子是在生活中比較普遍能接觸到的,實(shí)際人工智能應(yīng)用的領(lǐng)域還在不斷的擴(kuò)大,我們甚至都無法想象到,未來的生活會(huì)是怎樣的狀態(tài)和場景。

在這家公司之前,我做過語音交互類的產(chǎn)品交互設(shè)計(jì)。當(dāng)時(shí)在定義人與設(shè)備進(jìn)行語音交互時(shí),會(huì)是怎樣的一個(gè)交互場景。從說喚醒詞到發(fā)出指令,從收到反饋到繼續(xù)對(duì)話。喚醒后等待的時(shí)間、結(jié)束的規(guī)則等等這些。

而現(xiàn)在,我大部分時(shí)間是在設(shè)計(jì)工具,如何讓使用者能快速的創(chuàng)建出一個(gè)智能機(jī)器人。如何讓機(jī)器人的創(chuàng)建者方便快捷的添加機(jī)器人的相關(guān)數(shù)據(jù)和創(chuàng)建出對(duì)話場景。

所以在進(jìn)行這些工具的設(shè)計(jì)之前,有些名詞概念,會(huì)需要設(shè)計(jì)師來了解一下,能讓我們更好的理解人工智能的一些原理以及能夠讓設(shè)計(jì)師具象化到實(shí)際的設(shè)計(jì)中,甚至能基于此技術(shù)/原理來進(jìn)行相關(guān)的創(chuàng)新或研究。

整理內(nèi)容如下:(內(nèi)容基于工作及自身理解,如有概念理解錯(cuò)誤,歡迎指正)

下面嘗試用較易理解方式來解釋這些名詞:

與機(jī)器人進(jìn)行對(duì)話,首先就需要讓機(jī)器人懂我們說的話,這其中,就需要來關(guān)注到自然語言處理,通過自然語言處理技術(shù),能夠?qū)崿F(xiàn)我們與機(jī)器之間「無障礙」對(duì)話。

  • 自然語言處理(NLP):是人類與機(jī)器溝通的中介,需要靠它來理解、處理和運(yùn)用自然語言
  • 自然語言理解(NLU):指的是機(jī)器的語言理解能力,將人類語言轉(zhuǎn)化為機(jī)器可理解的內(nèi)容
  • 自然語言生成(NLG):指的是機(jī)器通過一系列的分析處理后,把計(jì)算機(jī)數(shù)據(jù)轉(zhuǎn)化生成為自然語言內(nèi)容,讓人類可理解

我把這三者關(guān)系畫了張圖示,我是以這樣的方式理解的

從圖中可進(jìn)一步看出,NLU 和 NLG 是 NLP 的子集,而 NLP 是人與機(jī)器溝通中很重要的存在。

涉及到語音就會(huì)經(jīng)常聽到 ASR 和 TTS

語音識(shí)別(ASR):將語音內(nèi)容轉(zhuǎn)為文字

如微信里面,當(dāng)別人發(fā)的語音信息不方便外放收聽時(shí),可以轉(zhuǎn)為文字查看

語音合成(TTS):將文字內(nèi)容轉(zhuǎn)為語音

如現(xiàn)在很多的閱讀軟件,支持播放,有的就是利用 TTS,直接將文本內(nèi)容轉(zhuǎn)為語音播放出來。

我試著將上面提到的 NLP 和 ASR、TTS 組合起來,關(guān)系可以如下圖所示

當(dāng)我們說一句話的時(shí)候,機(jī)器知道我們表達(dá)的是什么嗎?

意圖(Intent):一個(gè)人希望達(dá)到的目的,或者解釋為想要做什么,他的動(dòng)機(jī)是什么。

如:

  • 我對(duì)天貓精靈音箱說「聲音太小了」,那我的意圖是什么?意圖是「將音量調(diào)大」。
  • 「看下明天上海飛北京的航班信息。」 直接意圖:查航班信息,潛在意圖:「買機(jī)票」?

槽位(Slot):可以理解為系統(tǒng)要向用戶收集的關(guān)鍵信息。

如:

「買張明天從上海到北京的機(jī)票」

上面這句話中,獲取到意圖(買機(jī)票);提取關(guān)鍵信息 時(shí)間(明天)、地點(diǎn)(出發(fā)地:上海;到達(dá)地:北京)
這些關(guān)鍵的信息就是槽位,當(dāng)系統(tǒng)獲知到這些信息后,就能去執(zhí)行下一步動(dòng)作。

還可以這樣理解,當(dāng)我們?nèi)ャy行營業(yè)廳辦理卡的時(shí)候,會(huì)填寫一張表,表每個(gè)要填寫的選項(xiàng),就是一個(gè)個(gè)的槽位。槽位就是為你服務(wù)的人員要從你那收集的關(guān)鍵信息。

實(shí)體(Entity):用戶在語句中提到的具體信息

實(shí)體這詞放在生活中,我們很容易理解,就是實(shí)實(shí)在在的物體,像桌子、電腦、熊貓等等這些都是實(shí)體。

但是在人機(jī)對(duì)話中,機(jī)器理解人的語句內(nèi)容,會(huì)識(shí)別出語句中的實(shí)體信息(如:地點(diǎn)、人名、歌曲名等),然后進(jìn)行標(biāo)記。

那槽位和實(shí)體是不是講的是一回事?只是不同的說法?

我之前有一度陷入這樣的困惑中,但其實(shí)這兩者還是有所區(qū)別的。比如,一個(gè)實(shí)體是數(shù)字,但是在語句中,數(shù)字將代表不同的含義。

如:

人:有沒有10元的鮮花? 機(jī)器人:玫瑰花10元一支 。

這句話中,實(shí)體number「10」,但這個(gè) 10 在句子中表達(dá)的是價(jià)格,所以收集到的槽位信息是價(jià)格:「10元」

這樣說可能還是不太能理解,那我們可以先了解下,在一句表達(dá)中,需要進(jìn)行槽位信息收集,但機(jī)器如何知道「買張明天從上海到北京的機(jī)票」中,「上?!故浅鞘?,并且「上海」是出發(fā)地呢?

「上?!惯@個(gè)詞會(huì)被建立在一個(gè)城市實(shí)體詞庫中,這是「上?!鼓鼙蛔R(shí)別到是「城市」的原因。

其次,通過將解析槽位加入語料中,加以訓(xùn)練讓機(jī)器學(xué)習(xí)相關(guān)表述結(jié)構(gòu),來獲知該句式中,收集到的第一個(gè)城市是出發(fā)地,于是把第一個(gè)城市填到對(duì)應(yīng)的槽位中。

使用什么工具來讓機(jī)器知道,這個(gè)信息是要提取的信息?

解析器(Parser):抽取/解析用戶語句中的關(guān)鍵信息

上一個(gè)講到實(shí)體,這里講到的解析器則是這么個(gè)工具,用來抽取這些信息。比如會(huì)有些通用的解析器如時(shí)間解析器、城市解析器、歌手解析器等等。

解析器的類型也比較多,如通用解析器、詞典解析器、正則解析器、組合解析器等等,這里就不再擴(kuò)展開講具體解析器,實(shí)在過于復(fù)雜了。

命名實(shí)體識(shí)別(NER):用來識(shí)別具有特定意義的實(shí)體。主要會(huì)包括像機(jī)構(gòu)、地名、組織等。

是不是發(fā)現(xiàn),解析器和 NER 在做差不多的事情?我是這樣理解的,解析器的話是一個(gè)更大的存在,其中包括了 NER。解析器下會(huì)有不同類型和不同功能的工具來實(shí)現(xiàn)關(guān)鍵信息的識(shí)別/抽取。

在我們與機(jī)器人對(duì)話時(shí),一般會(huì)涉及到四個(gè)不同類型的對(duì)話,開放域的聊天、任務(wù)驅(qū)動(dòng)的對(duì)話、問答(FAQ)和推薦。

上面是在有次分享中提到的,這四個(gè)不同類型的對(duì)話,在機(jī)器人平臺(tái)中,會(huì)需要借助不同的功能模塊來實(shí)現(xiàn)。

任務(wù)對(duì)話(Task Dialogue ):有上下文聯(lián)系,就像我們要去訂票、訂餐之類的一段任務(wù)型的對(duì)話。

我們公司產(chǎn)品中,任務(wù)引擎模塊就是做這個(gè)任務(wù)對(duì)話的創(chuàng)建,比如,要訂機(jī)票的場景。用戶在這個(gè)訂機(jī)票的場景中,會(huì)涉及到的對(duì)話內(nèi)容、流程的設(shè)計(jì)。

知識(shí)圖譜(Knowledge Graph):這個(gè)可以理解為可視化關(guān)聯(lián)信息。
比如:查詢一個(gè)明星的身高、年齡,他的學(xué)校、他的女友,他的相關(guān)作品,這些基于這個(gè)人而構(gòu)建的信息庫,都可以通過知識(shí)圖譜在做整理。并且在構(gòu)建時(shí)能夠做到可視化的了解。

要讓機(jī)器人知道,它腦子里有貨了!

訓(xùn)練(Train):這個(gè)概念可以這樣理解,比如你創(chuàng)建了個(gè)機(jī)器人,但是它什么都還不懂,于是你塞了堆知識(shí)給他,這時(shí),它就需要自己訓(xùn)練學(xué)習(xí)了。訓(xùn)練好了,就能回答你塞的那堆知識(shí)里的問題了。

講到這就忍不住想用這個(gè)學(xué)習(xí)的例子,來簡單講下一般機(jī)器人的創(chuàng)建流程。像我們?cè)趯W(xué)校,會(huì)經(jīng)歷上課學(xué)習(xí)新知識(shí)-復(fù)習(xí)溫習(xí)-考試-整理錯(cuò)題集,以此循環(huán)進(jìn)行。

這個(gè)創(chuàng)建機(jī)器人的流程也是一樣通過知識(shí)的導(dǎo)入/創(chuàng)建-訓(xùn)練-測試-優(yōu)化-上線-優(yōu)化,以此循環(huán),不斷強(qiáng)化機(jī)器人,讓它越來越智能。

其他:

數(shù)據(jù)標(biāo)注:將對(duì)話日志中的有價(jià)值數(shù)據(jù)做標(biāo)注(標(biāo)記/匹配/關(guān)聯(lián)之類)。

因?yàn)槿说谋磉_(dá)萬千,多種表達(dá)方式都代表的同一個(gè)意思。有時(shí)用戶說了句話,是語料庫中并不包含,于是機(jī)器人可能就答非所問了。

Ai 訓(xùn)練師們就可以將這些數(shù)據(jù)信息標(biāo)注到對(duì)應(yīng)的問題中去,這樣當(dāng)用戶再用同樣方式表述時(shí),機(jī)器人就能如預(yù)期回答了。

講到標(biāo)注想到之前在朋友圈很火的你畫我猜,谷歌推出的這個(gè)小游戲席卷朋友圈。他們用了個(gè)如此聰明的做法,其實(shí)我們參與其中的做法就是在做數(shù)據(jù)標(biāo)注,而且還是主動(dòng)提供數(shù)據(jù)的那種。

這也反映了,數(shù)據(jù)對(duì)于機(jī)器人的重要性,通過不斷的進(jìn)行數(shù)據(jù)維護(hù)和補(bǔ)充數(shù)據(jù),機(jī)器人就會(huì)越來越理解人,表達(dá)也會(huì)越來越智能。就跟我們學(xué)習(xí)一樣,不斷學(xué)習(xí)才能夠理解其他的含義,甚至當(dāng)認(rèn)知能力提升了,看待問題的角度才能不一樣。

文章來源:優(yōu)設(shè)

分享本文至:

日歷

鏈接

個(gè)人資料

存檔